Counting Periodic Points in Parallel Graph Dynamical Systems
نویسندگان
چکیده
منابع مشابه
ENTROPY OF DYNAMICAL SYSTEMS ON WEIGHTS OF A GRAPH
Let $G$ be a finite simple graph whose vertices and edges are weighted by two functions. In this paper we shall define and calculate entropy of a dynamical system on weights of the graph $G$, by using the weights of vertices and edges of $G$. We examine the conditions under which entropy of the dynamical system is zero, possitive or $+infty$. At the end it is shown that, for $rin [0,+infty]$, t...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولInstitute for Mathematical Physics Almost All S{integer Dynamical Systems Have Many Periodic Points Almost All S{integer Dynamical Systems Have Many Periodic Points
We show that for almost every ergodic S{integer dynamical system the radius of convergence of the dynamical zeta function is no larger than exp(? 1 2 htop) < 1. In the arithmetic case almost every zeta function is irrational. We conjecture that for almost every ergodic S{integer dynamical system the radius of convergence of the zeta function is exactly exp(?htop) < 1 and the zeta function is ir...
متن کاملjordan c-dynamical systems
in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...
15 صفحه اولOrbit-counting in Non-hyperbolic Dynamical Systems
There are well-known analogs of the prime number theorem and Mertens’ theorem for dynamical systems with hyperbolic behaviour. Here we consider the same question for the simplest non-hyperbolic algebraic systems. The asymptotic behaviour of the orbit-counting function is governed by a rotation on an associated compact group, and in simple examples we exhibit uncountably many different asymptoti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complexity
سال: 2020
ISSN: 1076-2787,1099-0526
DOI: 10.1155/2020/9708347